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Model Parameters &

In the process of parameter learning, we
fixed model parameters.

For example, quadratically constrained
least-squares with Gaussian kernel models

e Gaussian width: ¢ (> 0)
o Regularization parameter: A (> 0)
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Different Model Parameters

Model parameters strongly affect learned
functions.

- Target function
- | earned function
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Determining Model Parameters’

We want to determine the model
parameters so that the generalization
error (expected test error) Is minimized.

G = /D (7))~ 1(®)) a(t)at

t ~ q(x)
However, f(x) is unknown so the
generalization error Is not accessible.

g(x) may also be unknown.



Generalization Error Estimation”
G = /D (7))~ 1(®)) a(t)at

Instead, we use a generalization error
estimate.
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Model Selection &

Prepare a set of model candidates.
{Mi | M = (¢i, Mi)}
Estimate generalization error for each model.
G(M;)
Choose the one with the minimum estimated
generalization error.
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M = argmin G(M)
Me{M;};



Assumptions

Training input points: z; R q(z)

Training output values: y; = f(x;) + €
Noise ¢; :i.i.d., mean 0, variance o*

Ee [EZ] = () Ee [67;6]'] — { ‘ EZ B J)
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Extra-Sample Method '

Suppose we have an extra example (z’,y’)
in addition to {(x;, y;) ", .

y =f@')+€ x'~qlx) Eld]=0
]Ee :6/2] _ 0_2

Eel€'e;] =0, Vi

Test the learned function using the extra

example.
2

Gevtra = (f (x') — y’)
f?% U, ¥3) Fimq



Extra-Sample Method (cont.) "

Geztra is Unbiased w.r.t.  and € (up to o*)
K Ee :éextra] =G + 02

Proof:
B Bo (f(2') - f(a) - €)
= Eo B0 |(f(@) = f(@)? = 2¢ (f(2) - f(a)) + €
=G +o°

2
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Gestro May be used for model selection.

However, In practice, such an extra example
IS not available (or if we have, it should be
iIncluded in the original training set!).
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Holdout Method

ldea: artificially create an extra sample

Divide training set {(xi,y:)};i—; into
(@i, vi) bizy and (z5,y;) .

Train a learning machine using {(x;, yi) }i-;
fi() «— {(@i, y:) bins
Test it using the holdout sample (x;, ;)

G = (fj(fﬂj) - yj)2



Almost Unbiasedness of Holdout’

Holdout method is almost unbiased w.r.t.
wj, Ej -

=B [Gj] = Gj + o7
~ G + o°

6= [ (H@ - @) g

s

fj(w) ~ f(ax) if n is large

However, @j IS heavily affected by the
choice of the holdout sample (x;,y;) .



Leave-One-Out Cross-Validatiori™

Repeat the holdout procedure for all
combinations and output the average.

- T
Groocv = - E G

j=1
G = (fj(flfj) — yj)2

LOOCV is almost unbiased w.r.t. {x;, €},

E(zyn Eeyn [Grooov] = B Egyn [G] + 07



k-Fold Cross-Validation  °°

Randomly split training set into
k disjoint subsets {7;}_,

k
. 1 .
chv:EZGTj
j=1
~ 1 " 2
Gﬁ_m P (ij(wz’)_yz')
fr; (@) +— {wz,y»uw}

k-fold Is easier to compute and more stable.
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Advantages of CV 03

Wide applicability: Almost unbiasedness
of LOOCYV holds for (virtually) any
learning methods

Practical usefulness: CV Is shown to

work very well in many practical
applications



Disadvantages of CV = *

Computationally expensive

It requires repeating training of
models with different subsets of
training samples

Number of folds

It IS often recommended to

use k£ =5,10 . However, how to
optimally choose % s still open.



Closed Form of LOOCVY  °°

Linear model A
Zaz%

Quadratically constralned least-squares
Jocrs(a) = Jrs(e) + e

1 —
GrLoocy = —HH HyHQ

H=1I-XLocrs Locrs=(X'X+M)'X'

H :same diagonal as H but zero for off-diagonal



Basic Idea 86

~ 1] ——1 5
Groocv = EHH Hy||

Let &"Y)pe the learned parameter without
the j-th sample (x;,y;).

Express &) in terms of & (the learned
parameter with all samples).

Key fact: 7 luuw UL

U—uu' ) t=U""4
( ) l—uwTU '

Proof Is homework (although it is rather
hard...)!



Homework (cont.)

(Try to) prove the closed-form
expression of leave-one-out Cross-
validation score for quadratically
constraint least-squares.

~ 1] —-—1 5
Groocv = EHH Hy||

37



Homework (cont.) >

For your own toy 1-dimensional data, perform

simulations using
eGaussian kernel models
eQuadratically-constrained least-squares learning
and optimize
e\Width of Gaussian kernel
eRegularization parameter

based on cross-validation. Analyze the results

when changing
e Target function
eNumber of samples
eNoise level



Suggestions >

Please look for software which can solve

e Linearly constrained quadratic programming
1

111111 §<Q/37/6> =+ </37q>

B
subject to VB < v and GB =g
e Linearly constrained linear programming

min(f3, )
subject to VB3 <wvand GB3 =g

For example, MOSEK, LOQO, or SeDuM..

The software Is not necessarily sophisticated,;
just elementary one Is enough.



