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50Over-fittingOver-fitting

LS is proved to be a good learning method:
Unbiased and BLUE in realizable cases
Asymptotically unbiased and asymptotically 
efficient in unrealizable cases

However, the learned function can over-fit to 
noisy examples (e.g., when the noise level 
is high).



51Over-fittingOver-fitting
Trigonometric polynomial model:

In order to prevent over-fitting, model (search 
space) should be restricted appropriately.
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52Today’s PlanToday’s Plan

Two approaches to restricting models:
Subspace LS
Quadratically constrained LS

Sparseness and model choice.
We focus on linear/kernel models.



53Subspace LSSubspace LS
Restrict the search space within a subspace

Ordinary LS Subspace LS

: orthogonal projection
onto the subspace



54How to Obtain SolutionsHow to Obtain Solutions
Since                                      

just replacing        with          gives a solution:

:Moore-Penrose generalized inverse



55Example of SLSExample of SLS

Over-fit can be avoided by properly
choosing the subspace.
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56Quadratically Constrained LSQuadratically Constrained LS
Restrict the search space within a 
hyper-sphere.



57How to Obtain SolutionsHow to Obtain Solutions
Lagrangian:

: Lagrange multiplier
Karush-Kuhn-Tucker (KKT) condition:       
for some     , the solution              satisfies



58How to Obtain Solutions (cont.)How to Obtain Solutions (cont.)

is obtained from
In practice, we start from              and solve



59Interpretation of QCLSInterpretation of QCLS

QCLS tries to avoid overfitting by adding 
penalty (regularizer) to the “goodness-of-
fit” term.

For this reason, QCLS is also called 
quadratically regularized LS.

is called the regularization parameter.

Good-
ness of fit

Penalty
(regularizer)



60Example of QCLSExample of QCLS
Gaussian kernel model:

Over-fit can be avoided by properly 
choosing the regularization parameter.
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61GeneralizationGeneralization
Restrict the search space within a 
hyper-ellipsoid.

Solution: (proof is homework!)

:Positive semi-definite matrix 
(“regularization matrix”)



62Sparseness of SolutionSparseness of Solution

In SLS, if the subspace is spanned by a 
subset of basis functions                  , some of 
the parameters              are exactly zero.



63Model ChoiceModel Choice

Sparse solution is computationally 
advantageous when calculating the 
output values.

However, the possible choices of such 
subspaces are combinatorial:
Computationally infeasible to find the 
best subset.



64Property of QCLSProperty of QCLS

In QCLS, model choice is continuous: 
However, solution is not generally sparse.



65HomeworkHomework
1. Prove that the solution of

is given by



66Homework (cont.)Homework (cont.)
2. For your own toy 1-dimensional data, 

perform simulations using 
Gaussian kernel models
Quadratically-constrained least-squares learning

and analyze the results, e.g., changing
Target functions
Number of samples
Noise level
Width of Gaussian kernel
Regularization parameter/matrix



67SuggestionsSuggestions
Please look for software which can solve

Linearly constrained quadratic programming

Linearly constrained linear programming

For example, MOSEK, LOQO, or SeDuMi.
The software is not necessarily sophisticated; 
just elementary one is enough.


