1 Equivalent theorem understanding in case of plane wave propagation

In case of plane wave propagation, the equivalent theorem is applied for a good understanding.

領域
$$I$$
 $\stackrel{z}{\longrightarrow}$ 領域 II $z < 0$ $\stackrel{z}{\longrightarrow}$ $Z > 0$ $Z > 0$

Figure 1: Original model

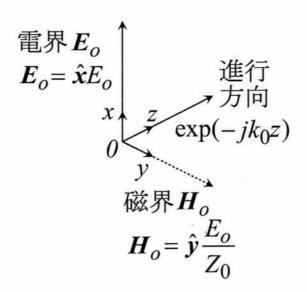


Figure 2: Plane wave

In fig.1, the free space is divided into two regions by an infinite plane at z=0. For z<0 and z>0, the region I and region II are defined, respectively. For +z propagation the plane wave is polarized in +x. In fig.2 the electromagnetic wave is shown and expressions are given as:

$$\mathbf{E}_o = \hat{\mathbf{x}} E_0 \exp\left(-jk_0 z\right) \tag{1}$$

$$\mathbf{H}_o = \hat{\mathbf{y}} \frac{E_0}{Z_0} \exp\left(-jk_0 z\right) \tag{2}$$

 k_0 is wave number and Z_0 is impedance in free space.