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Mathematical Model

Deterministic models

» The solution of a set of mathematical equations
» The exact outcomes of the experiment
Ex) Circuit theory, electromagnetic theory

Stochastic (Random) models

» Not possible to predict the exact value in advance

» Described by statistical parameters (Average power, po
wer spectral density

Ex) Thermal Noise in Comm. Systems (random motion of
Electrons)
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Random Process 3

- Random process is function of time
- Impossible to exactly define the value before experiment

Sample
space
5

Sample X |
Points |
|
Outcome of the

first trial of
the experiment

Qutcome of the
second trial of
the experiment

Outcome of the
ath trial of
the experiment

F—

Sample space or ensemble composed of functions of time
Random process or Stochastic process



Random Process(2)

- Assign to sample point s a function of time
X(t,s), -—T<t<T
- For a fixed sample point s;
X;(t) = X(t,s;) :Sample function
- For a fixed time Instance t,,
X ), % (8 ) X (8 ) = IX (L 8., X (e, Sy)s -y X (E,S,) )

Random variable

- Random process : X(t) is simply used
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Stationary Process

- Process iIs called “stationary” when

FX (4L+7),.. . X (L +7) (Xl’ T Xk) — FX (), X (ty) (Xl’ T Xk)
Strictly stationary

- First order stationary
|:x (t) (X) — |:x (t+7) (X) — |:x (X)
- Second order stationary

Fye)x @) (%, %,) = F4 (0).X (t,—t,) (X1 X3)



Mean, Correlation, Covariance

- Mean of the process X(t)
e ) =EX®]= ] x- i (x)x
Hy (1) = py — First order stationary

- Autocorrelation between X(t,) and X(t,)
Ry (t,t,) = E[X () X (t,)]
= fw fw XX, Ty x 1,y (X X2 )%, AX,
Ry (t,,t,) =Ry (t, ~t,)  — Second order stationary

- Auto covariance function

Cy(t,t,)= E[(X (t,) — 1y )(X (t,) — ey )]
=R, (t; —t) _:U>2<



Wide-sense Stationary (WSS)

- Wide-sense stationary (weakly stationary) : simply “stationary”
fy () = gy
Ry (. t,) =Ry (t, —t,)

- Properties of Autocorrelation function R, (r)= E[X (t+7)X (t)]
R, (0) = E[X 2(t)] : Mean-square value
R, (r)=R, (-7) : even function

IRy (z)) <R, (0) - bounded R I Al

Rapidly fluctuating
random process
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Cross-Correlation Function

- Cross correlations between two random process of X(t) and Y (1)

Ryy (t,U) = E[X ()Y (U)]
Ry (t,u) = E[Y () X (u)]

- Correlation matrix

R(t,U) = { Ry (t,u) Ry (t, U)}

Ry (tu) R, (t,u)

"T=1-U

R(z) = { Ry(7) Ry (7)}

Ryx (7) R, (7) o _
jointly stationary

- Symmetry property

Ry (7) = Ryx (-7)



Ergodic Process

- Expectation (or ensemble average) E[X(t)] means averages
across the process
- Time average means averages along the process

1 T .
T)=—"—"— t)dt X(t) : sample function of X(t)
(1) === ) X
Elu, (M)]== [ E[x®t
AT b

Uy - ensemble average of X(t)
1 T
= EJ—T Hy At = g1y

- Time average represents an unbiased estimate of ensemble-
averaged mean g,



Ergodic Process (2)

- Ergodic in the mean if the following are satisfied:
him 2, (T) =
limvar[, (T)]=0
- Ergodic in the autocorrelation function if the following are

satisfied: 1 7
Ry(7T) = | x(t+)x(tyct

limR,(z,T) =R, (¢)

limvar[R, (z,7)]=0

- For a random process to be ergodic, it has to be stationary
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L inear Time-Invariant Filter

- Suppose a random process X(t) is applied as input to LTI filter
h(t), producing a random process Y (t)

Impulse
X(t) ==—> response =3 Y(1)

h(t)

Y(t)=[ h(z)X(t-)dr,
4,0 =EIY O] E| [ n(e)X (t-r)dr,

= [ h(@)E[X (t-7) 7, = [ h(z)uy t—)dz,

() = g1y | D(z,)d7; = 1, H(0)



Linear Time-Invariant Filter(2)”

- Consider autocorrelation function of Y (t)

Ry (t,u) = E[Y ()Y (u)]

—E fwh(q)x (t—,)dz, fwh(rz)x (u—r,)dr,

R (tu) = dzh(r)[ drh(z)E[X(t-7)X (u-1,)

= [ deh(@)[ doh(r)Ry(t-7u-7,)  cr=t-u
R (D) =[ [ hE)h(r,)Rs (z =7, +7,)drdr,

E[Y 2(t)]= f f h(z,)h(z,)Ry (7, —7,)d7,d7,  Mean square value



Power Spectral Density

- Random process In linear systems in frequency domain

- Frequency response of the system

h(z,) = J: H(f)exp(]j2xfz,)df  Inverse Fourier Transform

- Mean-square value of output process Y(t)
Efv2®]=[" [ he)h(,)R, (r, - )drdz,

[ U‘” H (f)exp( jZﬁrl)df}h(rz)Rx (7, - 7,)d7,d7,

= [ dfH(f)[ drh(e,)[ Ry (r,—z)exp(j2rz)dz,
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Power Spectral Density (2)

ElY2®)= [ dH (1) dr,h(z,) exp(j2fz,)

[ Ry (z)exp(- j2nf)dz

ElY2@)= [ dfH(E)[” Re (2 exp(- j2afr)dz

Power spectrum density of stationary process X(t)

S, (f)= j_“; R, (7)exp(—j2Afr)dr

~EY2O)= [ S, (f)df



Power Spectral Density (3) -

- ldeal bandpass filter case

1, |f = f|<3Af

Hf) = {o, f = £] > 3Af

1.0 Af << fC

— e — — ot e — i — . =

ElY2®)]= [ [H (S, (f)df
L ; 1 ~ (2AF)S, (f,)

e Af > < A >




Properties of PSD

- Einstein-Wiener-Khintchine relation

S, (f)= .'Z R, (7)exp(—j2Afr)dr

R, (7) = .'_“; S, (f)exp(j2-f7)df

If either the autocorrelation function or power spectral density is known,

the other can be found exactly

- Property 1: DC value of PSD = total area of autocorrelation function
S, (0) = Lo R, (r)dz

- Property 2: mean-square value of the process = total area of PSD

EX2(®)]=[" s, (f)df
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Properties of PSD (2) !

- Property 3: PSD is always nonnegative

S, (f)=0 (vf)

- Property 4: PSD is even function for real-valued random process

Sx(=1)=3x(T)

- Property 5: Normalized PSD can be associated with a probability density
function

Sy (T)
[ sy (f)df

px(f):



Example (1) ’

X(t)
X (t) =sin(24f .t)
fc [0, W] uniform distribution
X(1) (Nonstationary)
* f=wW/4, W/2, W X(1)

NN

fX(t) (X) — fX(t+2') (X) — |:x (X)

_/\ o N4 o Txewin (X)) # e (X)




X(t)

A fc

Ry(7)

Example (2)

C

X (t) = Acos(24f t + ®)

['TC, TE]

uniform distribution



Random binary
Ry(t)

(1)

Example (3)

/T 0<t, <T
de(td):{ ‘

0 otherwise




Example (4)

X(t)
X (t) = Acos(2f t)
A o
Y () = [ X (z)d
(a) t, Y(1)
(b) Y(t) (stationary)

(c) Y(t) Ergothic
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X(t)
a X(t) DC(
b X(t)

)

Example (5)

Ry(7) Az
Ry(7)
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