Brief introduction to liquid surfaces \& liquid/liquid interfaces, Special open lectures on "Selected Topics in Physical Chemistry of Interface". Department of Electronic Chemistry, Titech
 Summer 2007, distributed by Hyuk Yu June 19, 2007

References:

1. "Physics \& Chemistry of Interfaces", Hans-Jürgen Butt, Karlheinz Graf \& Michael Kappl, 2003, Wiley-VCH.
2. "Physical Chemistry of Surfaces", Arthur W. Adamson \& Alice P. Gast, 1997, Wiley.
3. "Principles of Colloid \& Surface Chemistry", $2^{\text {nd }}$ edition, Paul C. Hiemenz, 1986, Dekker.
4. "Introduction to Colloid and Surface Chemistry, $4^{\text {th }}$ edition", Duncan J. Shaw, 1992, Butterworth-Heinemann.
5. Bulk properties of liquid; volume contraction (density increase) and vapor pressure increase on pressure.
6. Lifetime of a gas molecule on its liquid surface at equilibrium.
7. Estimate of surface tension from the molar enthalpy of vaporization, $\Delta \bar{H}_{\text {vip }}$.
8. Young-Laplace equation; equilibrium shape of liquid surface.
9. Kelvin equation; vapor pressure from curved liquid surface, capillary condensation and capillary force.
10. Bulk properties of liquid; volume contraction (density increase) and vapor pressure increase on pressure.

Bulk properties of liquids under external pressure at the isothermal condition

- Volume contraction or density increase
$K_{T}($ isothermal compressibility $) \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}=\frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_{T}$
Thurs, Tconst

$$
\begin{aligned}
& \frac{d V}{V}=-k_{T} d P, \ln \frac{V}{V_{0}}=-k_{T}\left(P-P_{0}\right)=-k_{T} \Delta P \\
& 1-\frac{V}{V_{0}}=\frac{\Delta V}{V_{0}}=1-e^{-K_{T} \Delta P} \approx k_{T} \Delta P(P) \text { if } K_{T} \Delta P \ll 1 \\
& \frac{d \rho}{\rho}=K_{T} d P, \ln \frac{\rho}{\rho_{0}}=K_{T}\left(P-P_{0}\right)=K_{T} \Delta P \\
& \frac{\rho-\rho_{0}}{\rho_{0}}=\frac{\Delta \rho}{\rho}=e^{k_{T} \Delta P}-1 \approx K_{T} \Delta P \text { if } K_{T} \Delta P \ll 1
\end{aligned}
$$

Example: Water at $298 \mathrm{~K}, \quad K_{T}=4.63 \cdot 10^{-5} \mathrm{~atm} \mathrm{~m}^{-1}$
When $\Delta P=10^{2}$ atm, $\frac{\Delta V}{V_{0}}=1-e^{-4.63 \cdot 10^{-3}}=0.00463$
Contraction of $\approx 0.46 \%$

$$
\frac{\Delta \rho}{\rho_{0}}=e^{4.63 \cdot 10^{-3}}-1=0.00463
$$

$\Delta P=10^{3} \mathrm{~atm}, \Delta V V_{0}=0.0474$ increase of $\approx 0.76 .46 \%$

$$
\Delta \rho / \rho_{0}=0.0404,4.7 \% \text { inverse }
$$

- Vaporpressure increase

$$
d \mu_{l}=-S_{m} d T+V_{m} d P, \quad d U_{V}=R T \frac{d P}{p}
$$

$P=$ external pressecue, $p_{p}=$ vape pressure
$T=$ cont, $R T \frac{d p}{p}=V \operatorname{lm} P, \quad R T \ln \frac{p}{p_{0}}=\operatorname{Vm}\left(P-P^{0}\right)$
Example: Water at $298 \mathrm{~K}, V_{m}=18 \cdot 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}^{2}$

$$
R T=2,48 \mathrm{~kJ} / \mathrm{mol}
$$

$$
\begin{aligned}
& p=p^{0} e^{V_{m} \Delta P / R T}, \quad \frac{\Delta p}{p^{\rho}}=e^{V_{m} \Delta P / R T}-1 \\
& \Delta P=10^{2} \text { atm }, \frac{V_{m} \Delta P}{R T}=0.0735, \frac{\Delta p}{p^{0}}=0.076
\end{aligned}
$$

$\sim 8 \%$ increase, $p=$

$$
\Delta P=10^{3} \text { atm } \quad \frac{V_{m} \Delta P}{R T}=0.735, \frac{\Delta P}{P^{0}}=1.08
$$

$\sim 110 \%$ prosecese or lug about twice
Example: Hg at $20^{\circ} \mathrm{C}, V_{m}=14.81 \cdot 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}$

Example: Hg at $100^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& V_{m}=15.02 \cdot 10^{-6} \mathrm{~m}^{3} / \mathrm{mol} \\
& R T=3.10 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$$
\Delta P=10^{2} \text { atm, } \frac{V_{m} \Delta P}{R T}=4.9 \cdot 10^{-2}, \frac{\Delta p}{p^{0}}=0.050
$$

5% increase

$$
\Delta P=10^{3} \mathrm{~atm}, \frac{V_{\text {n }} \Delta P}{R T}=0,49 \quad \frac{\Delta p}{b \rho}=0.632
$$

$\sim 63 \%$ increase

$$
\begin{aligned}
& R T=2.44 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta P=10^{2} \mathrm{~atm}, \quad \frac{V_{m} \Delta P}{R T}=6.16 \cdot 10^{-2}, \frac{\Delta p}{p^{0}}=0.0635 \\
& \sim 6 \% \text { mivease } \\
& \Delta P=10^{3} \text { atm } \quad \frac{V_{m} \Delta P}{R T}=0.616, \frac{\Delta p}{p^{0}}=0.852 \\
& \sim 85 \% \text { increase }
\end{aligned}
$$

2. Lifetime of a gas molecule on its liquid surface at equilibrium.

Estimate of the life time of a molecule on its liquid surface:

- Start witt the equilibrium nate of adsorption 4 desorption evaporation) of molecules to from the liquid surface under isotwimal condition

Example: water curfew vapor at $25^{\circ} \mathrm{C}$

$$
\operatorname{Prap}\left(25^{\circ}, \text { water }\right)=23.76 \mathrm{mam}_{2} \mathrm{Hg}
$$

Effucionnate of an ideal gas molecenal torragh an orifice of area A under p,

$$
R=\frac{B A^{\prime}}{\sqrt{2 \pi m k_{B} T}}
$$

$p=p_{\text {rap }}=\frac{23.76}{760} \cdot 1.013 \cdot 10^{5} \mathrm{~Pa}$
$A=10 \dot{A}^{2}=10\left(10^{-10} \mathrm{~m}\right)^{2}=10^{-19} \mathrm{~m}^{2}$
$m=0.018 \mathrm{~kg} / 6.022 \cdot 10^{23}$
$k_{B} T=4.1 \cdot 10^{-21} \mathrm{~J}$ (at 298 K)

$$
\begin{aligned}
& R=\frac{\frac{23.76}{760} \cdot 1.013 \cdot 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \cdot 10^{-19} \mathrm{~m}}{\left(2 \pi \cdot \frac{0.018 \mathrm{~kg}}{6.021 \cdot 10^{23}} \cdot 4.1 \cdot 10^{-21} \mathrm{~J}\right)^{1 / 2}}=1.14 \cdot 10^{7} \mathrm{~s}^{-1} \\
& \approx \frac{\frac{25}{75} \cdot 1 \cdot 10^{4+9} \cdot \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{\left(6 \cdot \frac{0.02}{6 \cdot 10^{23}} \cdot 4 \cdot 10^{-22} \mathrm{~kg} \cdot \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right)^{12}} \approx \frac{\frac{1}{3} \cdot 10^{-15} \mathrm{kgm} / \mathrm{m}^{2}}{\left(8 \cdot 10^{-46}\right)^{1 / 2} \mathrm{~kg} \mathrm{~m} / \mathrm{s}} \\
& \approx \frac{10^{-15} / \mathrm{s}}{3.3 \cdot 10^{-23}} \approx 10^{-15+22} / \mathrm{s}=10^{7} / \mathrm{s}
\end{aligned}
$$

$10 A^{2^{2}} \cong$ water molecule creoss-section
\therefore Adsorption nate of water at $25^{\circ} \mathrm{C}=$ desorption nate of wale a $125^{\circ} \mathrm{C}$
$=10^{7}$ moleales $/ \mathrm{s}$
Average life-time $=1 / R=10^{-7} \mathrm{~s}=0.1 \mu \mathrm{~s}=100 \mathrm{ks}$
3. Estimate of surface tension from the molar enthalpy of vaporization, $\Delta \bar{H}_{v a p}$.
Estimate of surface tenion of an arganic lipcid.
Start from the molar enthalpg of vaporization of aydohexame 4 avrive at an estimate of its surfece tention

- $\Delta \overline{t r m o p}_{\text {}}$ the entralpy requived to rolease a mole of ligaid to vapor, seleasing their interaction energy in liquid stale
- $d G^{\sigma}=\gamma d A, \quad d G^{\sigma}=G i b l$ frue energythore inareaing purface r ly $A A$ where c spoppoternality onstatis
- Envisiar a proces of lvinging a molleale from the halkliopuid to the surface under isoturmal condition

- Assuming the licuid atate padjing is cubic, ro eade suolecule is interacting with 6 noarest reighbors

$$
\cdot d G^{\sigma}=d H^{\sigma}-T d S^{\sigma} \approx d H^{\sigma}, \quad \Delta \hbar^{\sigma}=\frac{\Delta \bar{H}_{m \psi}}{6 \cdot N_{A}}, \gamma=\frac{\Delta \hbar^{\sigma}}{a}
$$

Example with cyclohexane

$$
\begin{aligned}
& \Delta \text { Trap }^{\prime}=30.5 \mathrm{~kJ} / \mathrm{mole} \\
& M=72+12=84 \mathrm{~g} / \mathrm{mol}=0.084 \mathrm{~kg} / \mathrm{mol} \\
& \rho=0.773 \mathrm{~g} / \mathrm{cm}^{3}=773 \mathrm{~kg} / \mathrm{m}^{3} \\
& \Delta h_{\text {surface }}=\frac{30.5 \cdot 10^{3} \mathrm{~J} / \mathrm{mol}}{6 \cdot 6.02 \cdot 10^{23} / \mathrm{mol}}=8.44 \cdot 10^{-21} \mathrm{~J} \\
& a=\left(\frac{M}{\rho N A}\right)^{2 / 3}=\left(\frac{0.084 \mathrm{lg} / \mathrm{mod}}{773 \frac{\mathrm{tan}}{\mathrm{~m}^{3}} \cdot 6.022 \cdot 10^{23} / \mathrm{mol}}\right)^{2 / 3}=319 \cdot 10^{-19} \mathrm{~m}^{2} \\
& \gamma=\frac{8.44 \cdot 10^{-21}}{3.19 \cdot 10^{19}}=2.65 \cdot 10^{-2} \mathrm{~J} / \mathrm{m}^{2}=26.5 \mathrm{mN} / \mathrm{m} \text { (estimate) } \\
& M 4.7 \mathrm{mN} / \mathrm{m} \text { (expel) }
\end{aligned}
$$

Correlation of surface tension \& Enthalpy of vaporization per molar area

- Linear hydrocarbon
- Cyclic and aromatic hydrocarbon

4. Young-Laplace equation and equilibrium shape of liquid surface.

- In equilibrium and neglecting gravity, the curvature of a liquid surface is constant and given by the Young-Laplace equation.
- The radii of curvature, R_{1} and R_{2}, are prescribed by two orthogonally intersecting planes.
- For a liquid surface with a finite curvature, there is a pressure difference across the interface, and the pressure is higher on the concave side of the interface.

$$
\Delta \mathrm{P}=\gamma\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right) \text { or } \Delta \mathrm{P}=\frac{2 \gamma}{\mathrm{R}} \text { (for sphere) }
$$

Fig. II-3. Condition for mechanical equilibrium for an arbitrarily curved surface.
Derivation:
Let the inner surface he displaced by a mace dz outward. The area change, $\Delta A=(x+d x)(y+d y)-x y=x d y+y d x+d x d y$
$\approx x d y+y d x$

$$
\begin{aligned}
& d G^{\sigma}=\gamma(x d y+y d x) \\
& W_{0} k=\Delta P d V=\Delta P x y d z
\end{aligned} \leftrightarrow \text { must he equal at equalioriam }
$$

$$
\text { Work }=\Delta P d V=\Delta P x y d z a \text { must the equal at equaliovicum }
$$

$$
\frac{x+d x}{R_{1}+d z}=\frac{x}{R_{1}}, \quad 1+\frac{d x}{x}=1+\frac{d z}{R_{1}}, \frac{d x}{x}=\frac{d z}{R_{1}}, d x=\frac{x d z}{R_{1}}
$$

$$
\frac{y+d y}{R_{2}+d z}=\frac{y}{R_{2}}, \longrightarrow d y=\frac{y d z}{R_{2}}
$$

$$
\gamma\left[x \frac{y d z}{R_{2}}+y \frac{x d z}{R_{1}}\right]=\Delta P x y d z, \quad \Delta P=\gamma\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

Erauple of $R_{1}+R_{2}$
Splux: $R_{1}=R_{2}, \quad \Delta P=\frac{2 r}{R}$
Gilonder: $\left.\begin{array}{rl}R_{1} & =\text { fincite } \\ R_{2} & =\text { infinite }\end{array}\right\} \Delta P=\frac{\gamma}{R_{1}}$
Plane: $R_{1}=R_{2}=\infty, \Delta P=0$
Lijecid drop Respended in its rapor

$$
P_{l}>P_{g}, \frac{1}{R}>0, \Delta P=\frac{2 r}{R}>0
$$

Gus luible suspuded in lisuid

$$
\text { (1) } P_{R}<P_{g}, \frac{1}{R}<0, \Delta P=\frac{-2 r}{R}<0
$$

Lispud trappea letmuen tior aflinders

$$
\left\{\begin{array}{l}
R_{1}>0, R_{2}<0 \\
R_{1} \quad \text { If }\left|R_{2}\right|>R_{1}, \quad \Delta P_{=}=\gamma\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)>0 \\
\text { If }\left|R_{2}\right|<R_{1} \quad \Delta P_{=} \gamma\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)<0
\end{array}\right.
$$

For a longe lendy, the Mydestatis prusure numet he incinded $\Delta P=\gamma\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\rho g h$

Butble prasuase in wate at $25^{\circ} \mathrm{C}, \gamma=72 \mathrm{ma} / \mathrm{m}$

$$
\begin{aligned}
& \text { dicaruter - } 2 \mathrm{~mm}, \quad \Delta P=\frac{2 \cdot 0.04 z \mathrm{Nm}}{1 \cdot 10^{3} \mathrm{~m}}=144 \mathrm{~N} / \mathrm{mm}^{2}=144 \mathrm{~Pa} \\
& \text { diamith }=20 \mathrm{xm} \quad \Delta P=\frac{2 \cdot 0.042 \mathrm{~N} / \mathrm{m}}{10 \cdot 10^{4} \mathrm{~m}}=1.44 \cdot 10^{9} \mathrm{ha} \approx 10^{2} \mathrm{cth}
\end{aligned}
$$

5. Kelvin equation; vapor pressure from curved liquid surface, capillary condensation and capillary force.

- Liquid vapor pressure from curved surface

Vapor pressure dependence on curved surface
po: liquid vapor pussuse from flat surface
p_{n} : Liquid vapor pressure prone a drop

Situation: a dup increases its mize \log adaitan f an moles it Rquid, thus its renfocerm increases resulting in $d G^{\sigma}$

$$
R T \ln \frac{p_{r}}{p_{0}}=\frac{2 r V_{m}}{r}, \quad p_{n}=p_{0} \exp \left(\frac{2 r V_{m}}{R T r}\right)
$$

Derivation:
Tconst
Vapor: idealgas, $d P$ change, $\quad d \mu_{v}=R T \frac{d P}{P}$
Liquid: drop size increased lu conduction of do nodes of the gas, $d G^{\sigma}=\gamma d A=\gamma d\left(A \pi r^{2}\right)=8 \pi r r d r$

$$
d n=d V / V m=4 \pi r^{2} d n / V m
$$

$$
d \mu_{l}=8 \pi \gamma \Omega d \Omega / 4 \pi r^{2} d \Omega \cdot V_{m}^{-1}=2 \gamma V_{m} / \Omega=4 \mu_{l}
$$

$d \mu_{v}=d \mu_{e}$ (equilitricim)

$$
R T \int_{p_{0}}^{p_{r}} \frac{d p}{p}=\frac{2 \gamma V_{m}}{n}, R T h \frac{p_{n}}{p_{0}}=\frac{2 \gamma V_{m}}{n}
$$

Concrete examples of vapor pressure increase and decrease with radius of droplet and bubbles. In the case of a bubble, the vapor pressure of liquid within constitutes a small portion of the total Laplace pressure.

Examples with water at 298 K .
Relative vapor pressure of water droplets of that within bubbles immersed in water.

$$
\left.\begin{array}{l}
V_{M}=18 \cdot 10^{-6} \mathrm{~m}^{3} / \mathrm{mol} \\
\gamma=72 \cdot 10^{-3} \mathrm{~N} / \mathrm{m} \\
R T=2.48 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~m} / \mathrm{mol}
\end{array}\right\} p_{c} /_{p_{0}}=\exp \left\{ \pm \frac{2 \cdot \gamma \cdot V_{\mathrm{m}}}{R T \cdot \Omega}\right\}
$$

$$
\begin{array}{rl}
\Omega=1 \mu \mathrm{~m} \quad \frac{\text { Droplet }}{P_{n} / p_{0}}= & \exp \left(\frac{2 \cdot 72 \cdot 10^{-3} \cdot 18 \cdot 10^{-6}}{2.48 \cdot 10^{3} \cdot 10^{-6}}\right) \\
& =\exp \left(t 1.045 \cdot 10^{-3}\right) \\
& =1.001 \\
\Omega=100 \mathrm{~mm} & 1.011 \\
\Omega=10 \mathrm{~nm} & 1.110 \\
\Omega=1 \mathrm{~nm} & 2.84
\end{array}
$$

- Capillary condensation:

Kelvin's recognition that polysaccharide surfaces retain moisture at relative humidity well below saturation such as in vegetables, cotton clothes and oatmeal. An illustration of conical surfaces with full wetting \& partial wetting

Totally wetting surface, $\Theta=0$, $R T \ln \left(\frac{p_{r}}{p_{o}}\right)=-\frac{2 \gamma \mathrm{~V}_{m}}{r_{c}}, r_{c}=$ capillary radius
Partially wetting surface, $\Theta>0, R T \ln \left(\frac{p_{r}}{p_{o}}\right)=-\frac{2 \gamma V_{m}}{r}, r \equiv r_{c} \cdot \cos \Theta$
Wetting of Capillary pores.
Suppose a porous solid with pores of all sizes placed in wats vapor with. RH of 90% at $20^{\circ} \mathrm{C}$. What is the size of pores that are filled with water?
Assume that the poles are sufficiently hydrophilic to he wetter
by water wish $\theta=0$

$$
\begin{aligned}
& R T \ln \frac{P_{r}}{P_{0}}=-\frac{2 r V_{m}}{R_{c}}, \quad R_{c}=-\frac{2 r V_{m}}{R T \ln \left(P_{r} / P_{0}\right)} \\
n_{c} & =\frac{-2 \cdot 72 \cdot 10^{-3} \mathrm{~N} / \mathrm{m} \cdot 18 \cdot 10^{-6} \mathrm{~m}^{3} / \mathrm{md}}{8.314 \cdot 293 \mathrm{~J} / \mathrm{md} \cdot \ln (0.9)}=10.1 \mathrm{~nm} \\
& \approx-\frac{2 \cdot 70 \cdot 20 \cdot 10^{-9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{md}}{8 \cdot 300-(0.1) \mathrm{N} \cdot \mathrm{~m} / \mathrm{md}} \approx \frac{280 \cdot 10^{-8}}{240} \mathrm{~m} \approx 11 \mathrm{~nm}
\end{aligned}
$$

- Capillary force

Two spherical particles adhesion via liquid meniscus Capillary force is responsible for clay o other solid particles stick together in finite relative humidity. An example is given above with two spherical particles

$$
\Delta P=+\gamma\left(-\frac{1}{R_{p}}-\frac{1}{n}\right) \hat{i}-\frac{\gamma}{n} \text { since } R_{p} \gg n
$$

Surface area $=\pi x^{2}$, /4 of a sphere editinadices x
$F=\Delta P \cdot \pi x^{2}=-\frac{r}{n} \cdot \pi x^{2}$ (fora is artmacive)
Note: $\left(R_{p}+\Omega\right)^{2}=(x+\Omega)^{2}+R_{p}^{2}$

$$
\begin{aligned}
& R_{R}^{2}+2 \Omega R_{p}+\mu^{2}=x^{2}+2 x n+\mu^{2}+R_{k}^{2} \approx x^{2} \\
& \therefore x>2 n \\
& \therefore x>R_{p}
\end{aligned}
$$

$$
F=-\frac{r}{\alpha} \cdot \pi \cdot 2 p R_{p}=-2 \pi \gamma R_{p}
$$

The capillary force to bring particles together is incept of $12+\left(p_{m} / p_{0}\right)$!

Capillary fores vs, gravitation force.
What would ,he the maxisucumprotule, size when
the capillary force to hold glade pantiles togetrue is
nollongen strong enough to separate them lu y suavity?
Glass density: $\rho=3000 \mathrm{~kg} / \mathrm{m}^{3}$, water vapor at 298 K

$$
\begin{aligned}
& m g=\frac{4}{3} \pi R_{p}^{3} \rho g=1.23 \cdot 10^{5} \frac{\mathrm{~kg}^{2}}{\mathrm{~m}^{2} \mathrm{~s}^{2}} \cdot R_{p}^{3} \\
& F_{\text {capilay }}=2 \pi \gamma R_{p}=0.45 \frac{\mathrm{~kg}}{\mathrm{~s}^{2}} \cdot R_{p}
\end{aligned}
$$

mg $=F_{\text {capillaing, }}$, the partides separate, $R_{p}=\left(\frac{0.45}{1.23 \cdot 10^{6}} \mathrm{~m}^{2}\right)^{1 / 2}$

$$
=1.9 \mathrm{~mm}
$$

