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l.i.d. Samples 180

Independent and identically distributed
(1.1.d.) samples
e Independent: joint probability is a product of

each probability
P(xi,x;) = P(x;) P(x;)

e |dentically distributed: each variable follow
the identical distribution:

x; ~ P(x)



Gaussian Distribution 181

Gaussian distribution: Probability
density function is given by

1 1 Tplig
Po.r(T) = EISEE exp (—5(33—9) | 9))

6,I" :Mean, covariance
Elxz] =6

E[(x —0)(x - 0)'] =T
When one-dimensional, s

0= e (~2220)
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Interesting Directions 1%
for Data Visualization

Which distribution is interesting to visualize?

If data follows the Gaussian distribution,
samples are spherically distributed.
Visualizing spherically x
distributed samples Is
not so interesting.
What about “non-
Gaussian” data?




Non-Gaussian Distributed Data®?

Non-Gaussian data look more interesting
than Gaussian:

Uniform Gaussian mixture Laplacian
(sharp edge) (cluster structure) (existence of outliers)




Projection Pursuit 184

ldea: Find the most non-Gaussian direction
INn the data

For this purpose, we need a criterion to
measure non-Gaussianity of data as a
function of the direction.



Kurtosis 185

Kurtosis for a one-dimensional random
variable s:

5 Els—E[s)*

(E{(s — Els])?])

(> 0)

Kurtosis measures the “sharpness” of
the distributions.

If tail of distribution Is

o Heavy mm)p [, is large
oLight mmp [, issmall



Kurtosis (cont.) 186

B4 = 3 : Gaussian distribution
G4 < 3 : Sub-Gaussian distribution
B4 > 3 : Super-Gaussian distribution

. Gaussian . :
Uniform . Gaussian Laplacian
mixture

| 114 A

B4 <3 B4 <3 B4 =3 Ba >3



Kurtosis-Based 187

Non-Gaussianity Measure

5, — _Ells ~Els)*
(El(s — B[s)”])

Non-Gaussianity is strong if (3, — 3)
large.
Non-Gaussianity of the data for a

direction b can be measured by letting
s =(b,x) and ||b]| =1.

2 is



PP Criterion 188

In practice, we use empirical approximation:
2

1 —\4
(5 22i=1(8i —5) B si = (b, xi)
)= (Fe oY) 5
PP criterion: =
1 = argmax Jpp(b)

beRd
subject to ||b|| = 1

There is no known method for analytically
solving this optimization problem.

We resort to numerical methods.



Gradient Ascent Approach %

Repeat until convergence:
e Update b to increase Jpp :

0Jpp

b%bleab 4 ) Jpp
(e > 0) /

e Modify b to satisfy ||b]| = 1:

b «— b/|b]] o]l =1



Data Centering and Sphering!*°

We center and sphere for easy calculation.
Centering: B 1 —
Xr, = L; — E jzzle

Sphering (or pre-whitening):

()

In matrix, ~ 1 s
X =(-XH’X")"*XH
n

~—

X = (zi|z2| - |®n) X = (2i]z2| - |20)

1 I,: n-dimensional identity matrix
H=1 n Elan

1,,«»: 7 X n matrix with all ones



Data Centering and Sphering*®°*

By centering and sphering, covariance
matrix becomes identity:

n
1 T
— £,
n -

=1

— I,

(/




Simplification for Sphered Data®?

For centered and sphered samples {T:};-1,

Jpp(b) = (% > (b))t - 3)

=1

0Jpp 1 —
= 2<n2(bxz )( Z:czb:cz )

1=1

Gradient update rule Is
1 T
b%b—ks(n;bwz ) szbwz

Don’t forget normalization: b <— b/||b|
Homework: Prove them!



193

Examples

s~ N(0,1)

t ~

2
g
I
-




Examples (cont.) 194

=2, m=1, n = 1000

- ()
s~ N(0,1)
t ~ Lap(0,1)




Important Notice 195

There will be no class next week (Jun. 26™)



Homework 196

Implement PP and reproduce the 2-
dimensional examples shown in the class.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Data Set 3 Data Set 4

You may create similar (or more
Interesting) data sets by yourself.



Homework (cont.)

Prove the following for centered and
sphered samples {xi};—;
A) Covariance matrix Is given by

T
1 ~ T
- T, = Ig4

T
=1

B) Jpp under ||b|| =1 is given by

Jpp(b) = (% Z<b7 z;)" — 3)

1=1

c) Gradient dJpp/0b Is given by

1=1

O0Jpp ] —
50 2<n2(bwz )( szbxz )
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