1 Equivalent theorem understanding in case of plane wave
propagation

In case of plane wave propagation, the equivalent theorem is applied for a good understand-
ing.
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Figure 2: Plane wave

In fig.1, the free space is divided into two regions by an infinite plane at z = 0. For z < 0
and z > 0, the region I and region II are defined, respectively. For +z propagation the
plane wave is polarized in +z. In fig.2 the electromagnetic wave is shown and expressions

are given as :

E, = XEj exp (—jkoz) (1)
. E ;
H, = yz—o exp (—jkoz) (2)
0

ko is wave number and Zj is impedance in free space.




1.1 Equivalent model for region II
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Figure 3: ik II O%fHE7 1V (1)

In fig.3 the equivalent model for region II is shown. Because in region II plane wave does
not exist, it is not taken into account (as real wave). We consider only the electromagnetic
field produced by equivalent electromagnetic currents(J.,M.) located on the boundary

S(z=0).
The equivalent electromagnetic currents(J.,M,) on the boundaryS(z = 0) are defined
as:
" . ~E . E
Je:ano=zxyz—z=—xZ—z (3)
Me:Eonl=iXiE0=—$’En (4)

where the vector f is defined as unitary vector Z in the inner direction for region II.
The electromagnetic field (E.;,He;) produced by equivalent electric current J. is given
as:

_ [ % exp(ikoz) (2 <0) )
= { ’?% exp (—jkoz) (z>0) (5)
_ [ 93 exp(ikez) (2<0)
Hei { Y32 exp (—jkoz) (2> 0) (6)

where the magnetic field direction is given by clockwise rotation around the electric current.
Because the propagation and magnetic field direction are known, the electric field direction
is found by using right hand law. The plane wave produced by equivalent source propagates
in —z direction (region I) and +z direction (region II).
The electromagnetic field (E¢m,Hem) produced by equivalent electric current M, is
given as:
S ~% 0 exp (jkoz) (2 <0) M
== i%ﬂ exp (—jkoz) (z>0)




> 5’2_@5 exp (jkoz) (2<0) .
- 925 exp (—jkoz) (z>0)

where the electric field direction is given by counterclockwise rotation around the magnetic
current. Because the propagation and magnetic field direction are known, the magnetic
field direction is found by using right hand law.
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Equivalent electromagnetic field(E.,H,) is found adding contribution from electrical
and magnetic equivalent field (Egj,He;) and (Eep,Hep) according to the boundary.

E, = EEJ . i Eem — { iED exp(_jkoz) = P],:J (Z X 0) (9)
0 {Z < 0)

H, = Hej + Hem = { (10)

5 exp (—jkoz) =H, (z>0)
The same result is observed in fig.4. In region II original field is given and field becomes
zero in region I.

1.2 Equivalent model for region I

In fig.5 the equivalent model for region I is shown. in region I the original plane wave
(E,.H,) must be taken into account. in this region the original electromagnetic field and the
field produced by the equivalent electromagnetic current must be added. because the vector
n is defined as unitary vector in the inner direction for region I (i = —2), the equivalent
electromagnetic currents on the boundary S(z = 0) become —J, and —M,. From (9)
and (10) the electromagnetic field (E.,H.) produced by these equivalent electromagnetic
currents becomes zero in region I and minus the original region II.

_fo (2<0)

Be = { —%Egexp (—jkoz) = -E, (2 >0) (11)
] 0 (2 <0)

He= { 58 exp (—jkoz) = —H, (2> 0) (12)
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Total electromagnetic field(E;H;) is found adding contribution from original electro-
magnetic field (E,,H,) and equivalent electromagnetic field (E.,H,).

_ | xEgexp(—jkoz) =E, (2<0)
E0+Ee_{ 0 (z>0) (13)
B = y%exp (—jkgl] = HO (3 < 0) (14)
? ‘10 (z>0)

The final result is observed in fig.6.

1.3 Equivalent model for region II when region I is perfect electric con-
ductor (PEC)
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Figure 7 shows case when region I is PEC. In this case the presence of electric wall forces
existence of only equivalent magnetic current M. When the electromagnetic field (E,,H,)
produced by equivalent magnetic current is needed, the existence of electric wall S must be
taken into account. Because the electric wall S is infinite plane, the electromagnetic field
(E¢,He) produced by equivalent magnetic current Me for z > 0 might be calculated using

5




image theory. when image theory is applied, region I is substituted by free space and the
equivalent magnetic current becomes 2M,. this argument is valid only for z > 0 ,where the
equivalent electromagnetic field becomes 2E,,, and 2H,,, similar to the equations (7)(8).

E. = 2E., = XEgexp (—jkoz) = E, (15)
Hp=2H = y% exp (—jkoz) = H, (16)
0

Therefore, the original field appears in region IT and is observed in fig.7. In region I the
electromagnetic field vanishes because of PEC.

1.4 Equivalent model for region I when region II is perfect electric con-
ductor (PEC)

fEISRT x%»z RESRIT

z<0 Y z>0
E.=x
Ahﬁ . ,.E;) @—)
H,=y—— v
Zy
E, =-xE,
BB _ S E, < EREocl RS
’_yZ ¥

E,= -2E,,= j:-Ea p=M,= j’Eo
«~@®

Figure 9: fHIK IT % 55 28 (K Tl /= L 7= ik I O%M£ 5L (1)

Figure 9 shows case when region II is PEC. In this case when the original field (E,,H,)
hits the electric wall, the reflected field (E,,H;) is induced. On the electric wall the equiv-
alent magnetic current —M, produce the equivalent electromagnetic field (E.,H,). For the
total contribution the three components are needed. The reflected wave (E,,H,) is defined
so that the tangential components of electric field vanishes on the electric wallS.

E, = ~Ey exp (jkoz) (17)
. E ;
H, =y exp (jkoz) (18)
0

Because the electric wall S is infinite plane, the electromagnetic field (E,,H,) produced by
equivalent magnetic current —M, for z < 0 might be calculated using image theory. When
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image theory is applied, region II is substituted by free space and the equivalent magnetic
current becomes —2M,. This argument is valid only for z < 0 ,where the equivalent
electromagnetic field becomes —2E,,, and —2H,,, similar to the equations (7)(8).

E. = xEjexp (jkoz) (19)
. E .
H, =~ exp (jkoz) (20)
0
then these three components must be added as:
- Eo .
H,+H, +H, = Y- exp (—7koz) = H, (22)
0

therefore, finally in region I the original field is obtained. And in region II the electromag-
netic field vanishes because of PEC.




