

Department of Mechanical and Control Engineering

Hiroshi Yamaura

Complex exciting force and response (1)

Damped one degree-of-freedom system

$$m\ddot{x} + c\dot{x} + kx = f$$

Complex exciting force and response (2)

Complex exciting force $f(t) = F\cos\omega t + iF\sin\omega t$ $= F\exp(i\omega t)$

 $\begin{aligned} x(t) &= A\cos(\omega t + \phi) + iA\sin(\omega t + \phi) \\ &= A\exp(i\phi)\exp(i\omega t) \\ &= X(i\omega)\exp(i\omega t) \end{aligned}$

Complex exciting force and response (3)

If once X(i) is calculated, $x_c(t) = \operatorname{Re}\{X(i\omega)\exp(i\omega t)\}$ $x_s(t) = \operatorname{Im}\{X(i\omega)\exp(i\omega t)\}$

and

 $A(\omega) = |X(i\omega)|$

 $\phi(\omega) = \angle X(i\omega)$

Frequency response function for force excitation (1)

Damped one degree-of-freedom system

$$m\ddot{x} + c\dot{x} + kx = f$$

Assume
$$x(t) = X(i\omega) \exp(i\omega t)$$

and $f(t) = F \exp(i\omega t)$
then $X(i\omega) = 1$

F

 $(k - m\omega^2) + ic\omega$

Frequency response function for force excitation (2)

Dynamic amplitude ratio

 \mathcal{O}_n

Define

where

$$\frac{X(i\omega)}{X_{st}} = \frac{k}{(k - m\omega^2) + ic\omega}$$
$$= \frac{1}{(1 - \Omega^2) + i2\zeta\Omega}$$

Open Course Ware, 2006, Tokyo Institute of Technology Copyright by Hiroshi Yamaura

Fig.1 Frequency response function of the dynamic amplitude ratio