

Department of Mechanical and Control Engineering

Hiroshi Yamaura

Undamped One-degree-offreedom Vibration System

> Natural frequency Free vibration

Natural angular frequency

Equation of Motion of an undamped and free vibration system

 $m\ddot{x} + kx = 0$

The characteristic equation

$$m\lambda^2 + k = 0 \longrightarrow \lambda = \pm i \omega_n, \quad \omega_n = \sqrt{\frac{k}{m}}$$

Free vibration – Initial value response (1)

General solution

$$x(t) = C_1 e^{i\omega_n t} + C_2 e^{-i\omega_n t}$$
$$= D_1 \cos \omega_n t + D_2 \sin \omega_n t$$
$$= A \cos \left(\omega_n t - \phi \right)$$

Free vibration – Initial value response (2)

Natural angular frequency, natural frequency and natural period

Table 2 Important parameters			
Notation	\mathbf{Unit}	Meaning	
ω_n	rad/s	Natural angular frequency	$=\sqrt{\frac{k}{m}}$
f_n	Hz (=1/s)	Natural frequency	$=\frac{\dot{\omega}_n}{2\pi}$
T_n	s	Natural period	$=\frac{1}{f_n}=\frac{2\pi}{\omega_n}$