応力とひずみ (stress & strain)

土質力学の符号

- 直応力、ひずみ:

圧縮を正

- せん断応力、ひずみ:

反時計周りを正

せん断応力: $\delta au = - rac{\delta F_s}{\delta A}$ (shear stress) $\delta \gamma = - rac{\delta h}{\delta z}$ (shear strain)

一般的な微小土要素の応力表示

応力:方向によって変化する。

主応力面: せん断力がゼロの面(互いに直交) (principal plane) 主応力面上の直応力(principal stresses) 最大主応力 (σ_1) > 中間主応力 (σ_2) > 最小主応力 (σ_3) (major) (intermediate) (minor)

土要素内の力釣合い

As:接触断面積

<u>全断面</u>

直応力:
$$\sigma=rac{P}{A}$$
,せん断 $(oldsymbol{\kappa})$ 力: $au=rac{T}{A}$

<u>粒子積極面</u>

直応力:
$$\sigma_s=rac{P_s}{A_s}$$
,せん断(応)力: $au_s=rac{T_s}{A_s}$

モールの応力円(2次元)

(Mohr's stress circle)

力の釣合い

$$\sigma_{\alpha} = \sigma_{1} \cos^{2} \alpha + \sigma_{3} \sin^{2} \alpha = \frac{\sigma_{1} + \sigma_{3}}{2} + \frac{\sigma_{1} - \sigma_{3}}{2} \cos 2\alpha$$

$$\tau_{\alpha} = (\sigma_{1} - \sigma_{3}) \sin \alpha \cos \alpha = \frac{\sigma_{1} - \sigma_{3}}{2} \sin 2\alpha$$

極(pole):

(傾き、応力成分)既知の面があり、モールの応力円上のその点から面と平行な線を引き、円と交わった点。 => 極から任意の傾きの線を引きモール円と交わった点の応力は、その線と平行な面上の応力成分

地盤中の応力(有効応力、全応力、間隙水圧)

土要素境界、内の応力

土要素内の力釣合い

面と垂直な方向の力の釣合い

inter-granular stress (粒子間力 / 全断面) $\sigma_g = \frac{P_s}{A}$

$$\sigma_{g} = \frac{P - (A - A_{s})u}{A}$$

$$= \sigma - (1 - a)u$$

$$\sigma_{g} = \sigma'$$

$$(接点面積0)$$

面と平行な方向の力の釣合い

水強度ゼロ
$$\longrightarrow$$
 $T = T_s \longrightarrow \tau = a \tau_s$

せん断応力: 全応力=有効応力

有効応力 <= 粒子接点力

有効応力の原理 by K. Terzaghi (1937) (The principle of effective stress)

The stresses in any point of a section through a mass of soil can be computed from the total principal stress, σ_1 , σ_2 , σ_3 , which act at this point. If the voids of the soil are filled with water under a stress u, the total stresses consist of two parts. One part u acts in the water and in the solid in every direction with equal intensity. It is the neutral stress (or pore pressure). The balance $\sigma'_1 = \sigma_1 - u$, $\sigma'_2 = \sigma_2 - u$ and $\sigma'_3 = \sigma_3 - u$ represents an excess over the neutral stress u and it has its seat exclusively in the solid phase of the soil. This fraction of the total principal stress will be called the effective stress.

All measurable effects of a change of stress, such as compression, distortion and a change of shearing resistance, are due exclusively to changes of effective stress. The effective stress σ is related to the total stress and pore pressure by $\sigma' = \sigma - u$. (宿題:この翻訳)

地盤中の応力

地盤中の応力

小テスト

 σ_z , σ_z' , u ?? $\triangle c$ $\triangle c$

本日のTechnical terms

```
応力:stress; ひずみ:strain
直応力: normal stress; 直ひずみ: normal strain
せん断応力: shear stress; せん断ひずみ: shear strain
全応力:total stress:
有効応力∶effective stress;
間隙水圧: pore water pressure;
有効応力原理:The principle of effective stress;
主応力∶principal stresses
最大主応力∶major principal stress
中間主応力:intermediate principal stress
最小主応力: minor principal stress
モールの応力円: Mohr's stress circle
(モール円の)極∶pole
```