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Diagram of Supervised Learning
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Notation

f(z) :Learning target function

D c R? :Domain of f(x)

x; :Training input point x; bR p(x)
y; = f(x;) + ¢ :Training output value
€; :zero-mean noise E.¢; =0
{(x;,y:)}i—; :Training examples

f(x) :Learned function

M :Model




3 Important Problems

J = /D (f(mtest) — f(mtest))Qp(mtest)dm

Active learning: {m}ig J

Model selection: n%ln J

Learning method: min J
fem



Today's Plan

Linear models / Kernel models

Least-squares learning
e Justification in realizable cases
e Justification in unrealizable cases



Linear/Non-Linear Models

Model is a set of functions from which
learning result functions are searched.

We use a family of functions f(x)
parameterized by

o= (al,ag,...,ap)T

A

Linear model: f(x) is linear w.r.t. a
Non-linear model: Otherwise



Linear Models
f(fl?) — Z%’%‘(m)

{pi(x)};_; :Linearly independent functions
For example, when d =1
e Polynomial
1z, 2%, ..., P~}
e [rigonometric polynomial
1,sinx,cosx,...,sinkx,coskx

p=2k+1



Multi-Dimensional Linear I\/Iodels8

For multidimensional input d > 1 , tensor
product Could be used
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The number of parametersis p = ()
which increases exponentially w.rt. d .

Infeasible for large d'!



Additive Models

For large d, we have to reduce the number
of parameters.

Additive model:
d p
fl@)=> > aijpei(z?)

j=1 i=1
The number of parameters is only p = dp’
However, this is too simple so its
representation capability may not be rich
enough in some application.




Kernel Models

Linear model:

{o:(x)}_, do not depend on {(xi, i) }i1

Kernel model:

E o; K(x, ;)

K(x,x") :Kernel functlon
e.g., Gaussian kernel

/1|2
(¢, ") = exp ( 5
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Kernel Models (cont.) "

Put kernel functions at training input points.




Kernel I\/Iodels (cont.) N

E o; K(x, ;)

The number of parameters IS n, which is
independent of the input dimensionality d .

Although kernel model is linear, the number of
parameters depends on the number of
parameters.

For this reason, mathematical treatment could
be different from ordinary linear models (e.g.,
called non-parametric models in statistics).



Summary of Linear Models "

Tensor product

High flexibility, high complexity
Additive model

Low flexibility, low complexity
Kernel model

Middle flexibility, middle complexity
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Learning Methods

Linear learning methods:

Parameter vector a = (a1, a9, ..., ;)"
Is estimated linearly w.r.t.

Yy = (y17y27°°°7yn)T

Non-linear learning methods: Otherwise



Linear Learning for
Linear and Kernel Models

flz) = Zaz‘%(fﬂ)

In linear learning methods, a learned
parameter vector is given by

& = Ly L :Learning matrix
X, ;= ;i(x;) :Design matrix
Suppose rank (X) =7p
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Least-Squares Learning 0

Try to make the output f(x;) as close to v
as possible:

ars = argmin Jpg(a)

(84
n

Jrs(a) = Z (f(fli‘z) - yz’)2

1=1
Using the design matrix,

Jos(a) = | X =yl



How to Obtain Solutions

Saddle-point equation:

VJLS(OA‘LS) — QXT(X&LS — y) =0
arg = (X"'X)"1X "y

Therefore, LS is linear learning.

ars = Lisy

Lis=(X"X)'x'
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Justification of LS
(Realizable Cases)

Realizable: f(x) is included in the model.
p
fx) = Zaf%‘(m)
1=1
Generalization error:

J = /D (f(z) - /(@) p(a)da
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Bias/Variance Decomposition

Expected generalization error:

i J = E|la — a*|3r

= Eella — Ecallfy + |[Eca — o[
A\ ~ J |\ ~ W,

Variance Bias

‘e .EXpectation over noise
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Unbiasedness and BLUE

Unbiased estimator:
Lo =o'
Best linear unbiased estimator (BLUE): A

linear estimator which has the smallest

variance among all linear unbiased estimators.
‘2

Cellaprve — Ecaprur

< ﬂeH&LU — ﬂe&LUHQ

for any linear unbiased estimator &,

When f(x) is realizable, &js is unbiased.
When realizable and iid noise, it is BLUE.
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Efficiency

The Cramer-Rao lower bound: Lower bound

of the variance of all (possibly non-linear)
unbiased estimators.

Efficient estimator: An unbiased estimator
whose variance attains Cramer-Rao bound.

For the linear regression model, Cramer-

Rao bound is
o2tr( X' X)) Hy

When ¢; "% N(0,02) , LS is efficient.



Justification of LS 24

(Unrealizable Cases)

Unrealizable: f(x) is not included in the model.

f(x) = g(x) + r(x)




Asymptotic Unbiasedness and “
Efficiency

Asymptotically unbiased estimator:
O — o as n — o0

Asymptotically efficient estimator: An
unbiased estimator whose variance

asymptotically attains Cramer-Rao’s lower
bound.

LS estimatpr Is asymptotically unbiased.
When ¢ "% N(0,02), LS estimator is

asymptotically efficient.
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Example of LS
f(fl?) = ZO@%‘(CB)

Trigonometric polynomial model

1,sinx,cosz,...,sin 1bx,cos 15z (p = 31)
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