

Solute size and	d Separa	ation size		
Q: Please giv	ve appro	priate siz	zes of	
Inm	10nm	0.1µ m	1μ m	
Bacteria	a	Sand		
Virus		Silt		
Nutrien	t	Clay		

<u>Nutrients</u>			Viruses	Organic de bris
Ions -	Natural Organi	ic Matters		Clay, Silt
Store State	Proteins	<u></u>		Bacteria
Pesticides,	Endocrine disr	rupting chemicals		
	1nm	10nm	0.1µ m	1μ m
Reverse Osmo	sis(RO)		100	Microfiltration (MF)
Nanofilt	ration (NF)			
Electrodialysis	(ED)	Utrafiltration (UF)		

	Flat Plate external crossflow	Tubular external crossflow	Immersed flat plate	Immersed hollow fiber
Packing Density	Moderate	Low	Moderate	High
Energy Consumption	Moderate	High	Low	Low
Fouling	Moderate	Good	Moderate	Poor
Cleaning		Good Sponge ball		Backwash

Recent applications

General Trends

UF tubular — Immersed MF (External crossflow)

1980s Building Scale wastewater reclamation 1990s Night soil treatment 2000s On site wastewater treatment 2005 ? Municipal wastewater treatment

	Raw Collected Human Excreta	Typical Effluent using membranes
BOD(mg/L)	5,000	1
COD(mg/L)	3,500(CODMn)	50
SS(mg/L)	8,000	ND
TN(mg/L)	1,000	10
TP(mg/L)	140	0.5

<u>Nutrients</u>		<u></u>	Viruses	Organic de bri
Ions	Natural Organi	ic Matters		Clay, Silt
	Proteins	<u> </u>	- 10	Bacteria
Pesticides	, Endocrine disr	rupting chemicals		
	1nm	10nm	0.1µ m	lµ m
Reverse Osn	nosis(RO)	52.	I	Acrofiltration (MF)
Nanof	iltration (NF)		1	
Electrodialys	is(ED)	Utrafiltration (UF)		

Conclusion

★ A two-phase model was successfully applied to the degradation of estrogens. Three parameters that are biodegradation constant, water-sludge partition constant and water-sludge transfer rate constant in this model were obtained for 17-betaestradiol (E2), estrone (E1), 17-alphaethynylestradiol (EE2) and bisphenol A (BPA) by batch experiments.

Conclusion

- ➡ The simulation shows that the removal of E2 and of BPA increased with the increase in HRT and MLSS, though the removal of EE2 was less than 38% even at infinite SRT.
- The ratio of the compounds transferred to the excess sludge was low, because the target solutes have a relatively hydrophilic nature and tend to remain in the water phase.