

Developm	nent of Str	uctural S	teels in Japa	in
1960	1970	1980	1990	2000
SM41				1.100
SM50 (195	9)			
SM50Y and SM53 (1966)			500MPa Class Ste	eel
SM58 (1966)				
			500MPa Class Ste	el
800MPa C	Class Steels (19	962) TMCP	800MPa Class S	teels(1992)
Bridge Pr	ojects			
Hama	amana <mark>Minato</mark> 964) (1974)	o Set	to (1988) Akashi	(1998)
(196)	Та	tara (1999)
		Ho	nshu-Shikoku Bri	dge Project

Effects of Impurities and Alloy Metals

Chromium, Cr

Hardening Agent, Intense Hardness after quenching with very high strength Chromium improves corrosion resistance

Nickel, Ni

Nickel-Chromium Steels have a very high tensile strength with considerable toughness and ductility Stainless Steels

Copper, Cu

Increases the resistance of steels to atmospheric corrosion Weathering Steels

Effects of Impurities and Alloy Metals

Sulfur, S

Less than 0.1% : No appreciable effects It has a very injurious effects upon the hot metal, Lessening its malleablility and weldability Phosphorus, P

The Most undesirable impurity It is detrimental to toughness, ductility, and weldability It Improves Corrosion Resistance

Manganese, Mn

Improves the strength of carbon steels

Mechanical Properties of Steels

Governed by Chemical Composition

- Strength Ductility
- Toughness
- Uprdpace
- Hardness
- Corrosion Resistance

Weldability

Prevention of Weld Cracks

Hot Cracks Cracks occur near melting temperature during welding or after welding Hot Cracks can be eliminated by designing the material composition of weld metal and base metal. $HCS = \frac{C(S + P + \frac{Si}{25} + \frac{Ni}{100})}{3Mn + Cr + Mo + V} \times 10^{3} < 4$ $MODE = \frac{C(S + P + \frac{Si}{25} + \frac{Ni}{100})}{Cracks occurred during solidification}$

Resistance Performance of HAZ against Cold Crack			
Carbon Equivalent			
$C_{eq} = C + \frac{Mn}{6} + \frac{Si}{24} + \frac{Ni}{40} + \frac{Cr}{5} + \frac{Mo}{4} + \frac{V}{14} \left(+ \frac{Cu}{13} \right)$ $P_{CM} = C + \frac{Si}{30} + \frac{Mn}{20} + \frac{Cu}{20} + \frac{Ni}{60} + \frac{Cr}{20} + \frac{Mo}{15} + \frac{V}{10} + 5B$ HW $CE_{HW} = C + \frac{Mn}{6} + \frac{Cu + Ni}{15} + \frac{Cr + Mo + V}{5}$			

Prevention of Cold Cracks

The Use of Low Hydrogen Processes

Preheating

Reduced Joint Restraint

Φz and Sulfur Inclusion in Steels

• If S>0.01% then many of the z-tension test results are ϕ_z <15%.

