Fatigue Strength of Welded Joints

Chitoshi Miki

\$ €

Department of Civil Engineering Tokyo Institute of Technology

Contents Effects of Residual Welding Stresses on Fatigue Crack Growth Rate Effects of Weld Defects on Fatigue Stresset

Effects of Weld Defects on Fatigue Strengths
 Longitudinal Welded Joints Containing Blowholes

2 💆 🧌

- Butt-Welded Joints Containing Various Embedded Defects
- High Strength Steels
 Fatigue Strength of Large-Size Gusset Joints of 800MPa Class Steels

Size Effects
 Full Size Fatigue Tests of Truss Chords

Fracture Surfaces with Beach Marks

20 🔳 🦉

Steel	Mechanical Properties					Chemical compositions %												
	t	Y.P.	T.S.	E£	VE	C	Si	Mn	P	S	Cu	Ni	Cr	Mo	B	V	Ceq	Remarks
HT 8 0	30	833	882	22	80	11	25	97	18	8	250	83	51	38	10	44	50	Main Pl GA~GE
HT80	22	764	823	24	201	10	27	97	15	5	-	104	59	33	2	-	50	Main Pl GF
SM58Q	15	568	657	36	186	14	34	133	17	6	-	1	2	3	-	37	39	Gusset P GA~GD

56 🔳 The Used Steels Mechanical Properties Chemical Composition (*/•) C Si Mn P S Mo Cu Cr Ni V B X100 N/mm² % N/mm² SM580,1=40 588 667 26 14 32 135 18 4 10 10 - 14 42 1 Flange 14 32 135 18 4 10 10 - 14 42 1 Web 29 SM580,1=40 539 637 43 28 131 13 3 15 - 13 - 39 1 Flange Web SM58Q,t=60 618 696 24 600MPa Class Steels Thickness = 40, 60mm

References

- Chitoshi Miki, Fumio Nishino, Yasuaki Hirabayashi, Koei Takena: Influence of Residual Welding Stress on Fatigue Crack Growth Rate, Proc. of JSCE, No.330, 1983.2.
 Chitoshi Miki, Fumio Nishino, Yasuaki Hirabayashi, Hiroyuki Ohga: Fatigue Strength of Longitudinal Welded Joints Containing Blowholes, Proc. of JSCE, No.325, 1982.9.
 Chitoshi Miki, Fauzri Fahimuddin, Kengo Anami: Fatigue Strength of Butt-Welded Joints Containing Various Embedded Defects, Structural Eng./Earthquake Eng., JSCE, 0No.668/1-54, 2001.1.
 Hirosuke Shimokawa, Koei Takena, Fumio Itoh, Chitoshi Miki: Fatigue Strength of Large Gusset Joints of 800MPa Class Steels, Proc. of JSCE, Vol.2, No.1, 1985.4.
 Hirosuke Shimokawa, Koei Takena, Makoto Fukazawa, Chitoshi Miki: A Fatigue Test on the Full-Size Truss Chord, Proc. of JSCE, No.344/I-1, 1984.4.

56 单 🖲